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Introduction
In a sequel to the previous article on straight line
regression, we will focus on the special type of
multiple linear regression- Logistic regression. If the
goal of research is find out the causal relationship
between the dependent and independent variables,
the regression methods are more useful. The straight
line regression can be extended to class of multiple
regression analysis. The Multiple regression is useful
method to characterize the relationship between  the
suppose to causal factors and effect describing the
strength of the relationship through quantitative
formula. Before pitching into the topic of interest, let
us digress briefly about the statistical model building
process pertinent to the regression modelling in
general.

Principles of statistical modelling
a) Exploratory data analysis
Any analysis of data should begin with a consideration
of each variable separately, both to check on data
quality (for example, are the values plausible?) and
to help with model formulation.
1. What is the scale of measurement? Is it

continuous or categorical? If it is categorical how
many categories does it have and are they nominal
or ordinal?

2. What is the shape of the distribution? This can
be examined using frequency tables, dot plots,
histograms and other graphical methods.

3. How is it associated with other variables? Cross
tabulations for categorical variables, scatter plots
for continuous variables, side-by-side box plots
for continuous scale measurements grouped
according to the factor levels of a categorical
variable, and other such summaries can help to
identify patterns of association. For example, do
the points on a scatter plot suggest linear or non-

linear relationships? Do the group means increase
or decrease consistently with an ordinal variable
defining the groups?

b) Model formulation
The models in this article (that eventually follows)
involve a single response variable Y and usually
several explanatory variables (Xi ‘s). Knowledge of
the context in which the data were obtained, including
the substantive questions of interest, theoretical
relationships among the variables, the study design
and results of the exploratory data analysis can all
be used to help formulate a model. Of course, the
model formulation has two components:
1. Probability distribution of Y the response variable,

for example, . , N ~ Y 2 )( σµ
2. Equation linking the Mean value (expected value)

of Y with a linear combination of the explanatory
variables, for example, E (Y) = α +β x
(Note: E(Y) = mean value of Y)

c) Parameter estimation

The most commonly used estimation methods in
regression are maximum likelihood estimator. This
method has many desirable properties. The
parameter estimated has desirable properties
statistical inference which will follow the model
building. Besides this method, there are other methods
currently packaged with all major software.
d) Model Checking

After estimating the parameter one has to check the
assumptions and assess the distribution of the
predictor variables relevant to the methods used. Let
me give brief overview of the statistical techniques
used in the process, I would like to elucidate about
one particular tool known as residuals in regression
diagnostics.

Firstly, consider a model involving the normal
distribution for the outcome variables. Residuals, are
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important tools for checking the assumptions made
in formulating a model. They should usually be
independent and have a distribution which is
approximately normal with a mean of zero and
constant variance. They are also expected to be
unrelated to the explanatory variables. These
residuals, after some manipulations are standardized.
These standardized residuals can be compared to
the Normal distribution to assess the adequacy of
the distributional assumptions and to identify any
unusual values. This can be done by inspecting their
frequency distribution and looking for values beyond
the likely range; for example, no more than 5% should
be less than “1.96 or greater than +1.96 and no more
than 1% should be beyond ± 2.58.

The standardized residuals plotted against each
of the explanatory variables that are included in the
model presents predictive power of the model
graphically. If the model adequately describes the
effect of the variable, there should be no apparent
pattern in the plot. If it is inadequate, the points may
display curvature or some other systematic pattern
which would suggest that additional or alternative
terms may need to be included in the model. The
residuals should also be plotted against other potential
explanatory variables that are not in the model. If
there is any systematic pattern, this suggests that
additional variables should be included.
e) Inference and interpretation
It is sometimes useful to think of scientific data as
measurements composed of a message, or signal,
that is distorted by noise. For example: Suppose
there is evidence based on the collected information
that birth weight of the babies increase with
gestational age, we would like to know if it is same
among both genders. The ‘signal’ is the birth weight
of the babies and the ‘noise’ comes from all the
genetic and environmental factors that lead to
individual variation. A goal of statistical modelling is
to extract as much information as possible about the
signal. In practice, this has to be balanced against
other criteria such as simplicity. Accordingly a simpler
or more parsimonious model that describes the data
adequately is preferable to a more complicated one
which leaves little of the variability ‘unexplained’.

To determine a parsimonious model consistent with
the data, we test hypotheses about the parameters.
Hypothesis testing is performed in the context of
model fitting by defining a series of nested models
corresponding to different hypotheses. Then the
question about whether the data support a particular
hypothesis can be formulated in terms of the
adequacy of fit of the corresponding model relative
to other more complicated models.

Multiple Linear regression Methods -
Logistic regression
Introduction
Logistic regression is a form of statistical modelling
that is often appropriate for categorical outcome
variables. It describes the relationship between a
categorical response variable and set of explanatory
variables. The response variable usually has two
outcomes, but it may be polychotomous (more than
two outcomes) that is have more than two response
levels. They can be either nominally or ordinally
scaled. This article will mainly address the use and
necessity of logistic regression when the response
variable has dichotomous nature.

Historically, one of the first uses of regression-
like models for binomial outcome data was for
bioassay results (Finney, 1973). Responses were the
proportions or percentages of ‘successes’; for
example, the proportion of experimental animals killed
by various dose levels of a toxic substance. Such
data are sometimes called quantal responses. The
aim is to describe the probability of ‘success’, ð, as a
function of the dose, x; for example,

 x. g 21 ββπ + = )(
Consider for example, Beetle mortality, The

Table1 shows numbers of beetles dead after five
hours exposure to gaseous carbon disulphide at
various concentrations (data from Bliss, 1935).
Figure1 shows the proportions pi = yi/ni plotted
against dose xi (actually xi is the logarithm of the
quantity of carbon disulphide). We want to pick model
that is well suited to modelling a probability, since the
probability ranges from 0 to 1 as dosage varies can
take any nonnegative value. A mathematical function
named  logistic function is well suited to modelling a
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probability for this data. The characteristic of this
function are a) whatever the value of the explanatory
variables the model will be predicting the risk of
disease. b) Another reason why the logistic model is
so popular relates to the sigmoid shape of the logistic
function and as sigmoid shape applies to the variety
of disease conditions. The proportion of killed beetles
is modelled through the logistic function. In this
example,  proportion of  killed is dependent variable
and dosage administered is independent variable.

πi = ,
)x  exp(1

)x  exp(

i21

i21

ββ
ββ
++

+

for xi th dosage where i=1,..,n. After little
mathematical work of the above equation, one can
obtain logarithm of odds with the given dose level

Note that right hand side of the equation is linear
with respect to the xi. The logarithm of odds is
commonly known as logit.

In epidemiologic studies, the logistic function is
used to state individual’s risk of developing a disease.
One advantage is that whatever the value of the
explanatory variables the model will be predictive
the risk of disease. Another reason why the logistic
model is so popular relates to the sigmoid shape of
the logistic function (See figure1 for typical sigmoid
shape) as sigmoid shape applies to the variety of
disease conditions. In this example, the probability of
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Dose, xi Number of Number of
(Log10CS2mgl”1)  beetles, ni killed, yi

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.861 62 61
1.8839 60 60

Table1: Beetle mortality data

getting killed increases as dosage level is increased.
After rising over a range of intermediate values of
dose, it  remains close 1 once xi gets large enough.

Odds Ratio - measure of association:
The regression coefficients jβ  in the logistic model
play an important role in providing information about
the relationships of the predictors in the model to the
dependent variable. For the logistic model,
quantification of these relationships involves a
parameter called odds ratio.

Consider an example, where lung  cancer status is
determined only by smoking status. For the time let
us assume that data satisfactorily follows
assumptions and logistic model is fit, say

     (smoking status), where Y
denotes lung cancer status (1= yes, 0=no). Therefore
the odd ratio for smokers versus non-smokers
denoted by O.R as

Note that , substitution and mathematical manipulation
on mathemetical formula yields, Odds of smokers
and Odds of non-smokers

rewriting odds ratio O.R

log Pr(Y=1) = (β1+β2

S vs. NS  =
odds (S)

odds (NS)

Let D be an out come of
an event and define odds (D) =

pr(D)

1- pr(D)

( log Pr(Y=1) Smokers) → log [odds (Smokers)]
= β1+β2 → log odds (Smokers) = exp ( β1+β2 )

( log Pr(Y=1) Non Smokers) → log [odds (Non
Smokers)] = β1+β2 → log odds (Non Smokers) =
exp ( β1+β2 )

S vs. NS  =
exp (β1+β2 )

exp β1

→ exp β2
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In other words, for the above example involving
dichotomous predictors, the odds ratio comparing the
two categories of the predictor is obtained by
exponentiating the coefficient of the predictor in the
logistic model.

Understanding Basics in logistic
modelling:
Essentially given a data, the logistic model may be fit
based on the clinical and biological relevance of the
independent variables on the dependent variable. After
fitting the model to the data, one may need to assess
how well it fits the data, or how close the model
predicted values are to the corresponding observed
values. The test statistics that assess fit in this
manner are known as goodness-of-fit statistics.

Model Fitting & Goodness of fit statistic:
Generally, the logistic models are fit through the
softwares which takes care of the complex
mathematical iterations to churn out the parameters
of the model. In fact, all software have inbuilt
functions to estimate the parameters through different
methods.The goodness of fit of the data is useful to
assess the model fit to the data.They address the
differences between observed and predicted values
or their ratio, in some appropriate manner. Of course,
departure of the predicted values or proportions from
the observed one should be essentially random. The
statistics for testing goodness of fit have an
approximate chi-square distributions when the sample
is large for combination of the categories in the
independent variables. The two traditional goodness-
of-fit test statistics used are the Pearson chi-square,
Qp, and the likelihood ratio chi-square, QL, also known
as the deviance. If they are larger than tolerable
values, one may have an over simplified model and
you need to identify some other factors to better
explain the variation in the data. Sometimes a logistic
model is considered reasonable, but the goodness-
of-fit test statistics indicate that too much variation
remains (usually the deviance is examined). This
condition is known as over dispersion. There are
methods available to account for the over dispersion
in the model.

An example:
The following data are based on a study on coronary
artery disease by Koch, Imrey, et al. 1985.
Investigators were interested in whether
electrocardiogram (ECG) measurement was
associated with disease status. Gender was thought
to be confounder for the disease, so data were post
stratified data into male and female groups.

Sex ECG Segment Coronary artery
Depression disease

Yes No

Female <0.1 11 4
Female >=0.1 10 8
Male <0.1 9 9
Male >=0.1 6 21

Table1.1 Coronary artery disease data

The table 1.1 describes the data collected on the
patients who underwent diagnosis. It is easy to
understand the diagnosis information from the table.
The first row can be rephrased as people who were
all female and segment depression less than 0.1, there
were 11 people who had coronary artery disease and
4 did not have coronary artery disease.

An usual model for the data is the one that
includes effects for Sex and ECG. That is to find out
if the sex and ECG affects the occurance of coronary
artery disease. When all the supposed predictor
variables are included in the model without product
of them and square of the variables, it is called main
effects model. The main effects model tests the
effects of each supposed predictors of the disease
statistically. Mathematically logistic model including
the main effects can be described as in the figure 1.

Here è 11 represents probability of coronary artery
disease in the female population who have segment
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Sex ECG Pr(CA disease) Odds of
= θhi CA

Disease

Female <0.1 eα/ 1+eα eα

Female >=0.1 eα+β2/1+eα+β2 eα+β2

Male <0.1 eα+β1 /1+eα+β1 eα+β1

Male >=0.1 eα+β1+β2/1+eα+β1+β2 eα+β1+β2

Table1.2- Odds of CA Disease.

depression less than 0.1.Taking logarithm of the above
equations one may obtain the table 1.2 and their
respective odds. The quantity á is the log odds of
coronary artery disease for females with an ECG of
less than 0.1 segment depression. The parameter â1

is the increment in log odds for males, and â2 is the
increment in log odds for having an ECG of atleast
0.1 segment depression. The above mathematical
equation can be interpreted as in the following table.

When the analysis was done using the SAS software
the following were obtained among the output. Based
on this output, the parameter estimates and other
useful information are extracted, simultaneous
significance of the predictors are tested and goodness
of fit of the model is validated. First let us explore
the goodness of fit statistic provided in the Table 2.1.
The Deviance and Pearson statistic are evaluated
for the significance of the parameter in the model. A
p-value greater than 0.05 suggests that model fits
the adequately.

Table 2.1 Goodness of fit of the model to the data.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 1 0.2141 0.2141 0.6436

Pearson 1 0.2155 0.2155 0.6425

As the model fits the data adequately, it is appropriate
to examine the parameter estimates from the model
(Table 2.2). The p-values of the parameters are less
than the significant level of 0.05 suggesting the

population values are not equal to zero. The variable
sex and ECG are significant compared to a
significance level of 0.05. So the results of the model
predicted odds of coronary disease is listed in the
Table 2.2- 2.3.

Sex ECG Pr(CA disease) Odds of CA
= èhi Disease

Female <0.1 =
∧

α -1.1747 =
∧
αe 0.3089

Female >=0.1 =+
∧∧

2βα -0.1202 =
∧∧

+ 2βαe 0.8867

Male <0.1 =+
∧∧

2βα 0.1023 =
∧∧

+ 1βαe 1.1077

Male >=0.1 =++
∧∧∧

21 ββα =
∧∧∧

++ 21 ββαe
1.1568 3.1797

Table 2.3 Model predicted logits and odds of
CA disease.

Conclusion:
In the present paper, we did talk about the basic
aspects of the statistical modelling and the usefulness
of the data. The statistical data modelling especially
regression in reality is very much challenging
presenting abnormal data that may not be discerned
very well. Somtimes the model may not fit the data
adequately. In those cases we need to find alternative
method that will do the intended analysis in line with

Table 2.2 Analysis of Maximum Likelihood
Estimates

Parameter Estimate Standard Interpretation
Error

A -1.1747 0.4854 log of odds of
coronary disease
for females with
ecg <0.1

sex 1.2770 0.4980 Increment in log
of odds for
males

ecg 1.0545 0.4980 Increment in log
of odds for high
ecg
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the goal of the research. The successful strategy
lies at the design of studies and selecting appropriate
statistical methods that will have robustness to the
data anamolies. It is better to anticipate the problems
of data anomalies before we find it difficult to handle
it. However with the plethora of methods and
techniques to measure the association patterns the
onus rests on us to choose more than one technique
if there is snag with a method.
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